Thursday, March 28, 2013

words about reading from Charlie Munger

I came across this famous person, Charlie Munger, again from the book "Hedgehogging". I feel quite embarrassed that I did not ever know this big guy and the words of his wisdom, which let me think seriously about the importance of reading, particularly to myself. The follows is a piece of words from him.

"I have said that in my whole life, I have known no wise person over a broad subject matter area who didn’t read all the time—none, zero. Now I know all kinds of shrewd people who by staying within a narrow area can do very well without reading. But investment is a broad area. So if you think you’re going to be good at it and not read all the time, you have a different idea than I do. . . .You’d be amazed at how much Warren [Buffett] reads.You’d be amazed at how much I read. "    —Charlie Munger at the Berkshire Hathaway 2003 Annual Meeting


                                           Charlie Munger at Berkshire Hathaway's 2010 shareholder meeting (source, Wikipedia)

Wednesday, March 27, 2013

Interesting words said about economists


I came across this interesting word in the Macroeconomics book by Abel Bernanke and Croushore.

President Harry Truman expressed the frustration of many policymakers when he said he wanted a one-handed economist one who wouldn't always say, "On the one hand, . . . ; on the other hand . . . . "

Tuesday, March 26, 2013

趋势投资者与价值投资者

趋势投资者喜欢让市场告诉他们投资什么,价值投资者喜欢通过自己的分析来自己决定投资组合。

后记:
突然联系起来经典经济学派和凯恩斯学派来,前者相信市场,后者更相信自己。可能把经济学派和投资者类型联系起来有点牵强,但从对自己和市场力量的偏好来说,还真有点像。

Monday, March 25, 2013

Something from "Hedgehogging" -- trap of randomness

So I am reading a very nice book, "Hedgehogging" which tells stories about hedge fund and the people.

As I am from a statistics background, I am automatically sensitive to numbers (with uncertainty) and probability and the combination of the two. In Chapter 8, I am impressed by an example that the author cites from "Fooled by Randomness: The Hidden Role of Chance in Life and in the Markets".

The example says:
You are an excellent investor, and are able to gain additional 15% return above US bond. The variability (standard deviation) of your return in a year is 10%. (Assuming your return rate follows a normal distribution ), then you have about 93% chance to gain more then the US bond in a year.

Then the author cites a table from that book which illustrate the relationship between the probability that you gain more than US bond and the time frame you are checking your return. However, the results in table from the original book are simulation based. Actually, we can calculate the exact number for the table. So I automatically cannot help calculating it and update the table as follows --


If you compare results in this table with the original table, you will see very tiny difference.

Here is formula to calculate the probability that you will gain more than US bond, given that you gain 15% more than US bond and the standard deviation of your return in a year is 10%.

Let X_t be your return in a time span T. Let N be number of period of time span T to be a year. For example, N=3 means time span T is 4 month, which is one season; N=365 means time span T is a day. Assuming X_t also follows a normal distribution and X_t's are independent of each other; therefore, X_t ~ N(mu, sigma/sqrt(N)), where mu is 15% and sigma is 10%. Thus, the probability you gain more than US bond,

P(X_t>0 ) = P_norm(mu/(sigma*sqrt(N)))

P_norm is cumulative probability function of standard normal distribution. 

The follows is a simple R code to calculate the above:

u=0.15 # on average you earn 15% more than US bond per year
sig = 0.1 #variability of your annual return

prob_noloss <- function(u, sig, T) pnorm(u/(sig*sqrt(T)))

#probability you gain more than US bond per year
prob_noloss(u,sig,T=1)

#probability you gain more than US bond per season
prob_noloss(u,sig,T=3)

#probability you gain more than US bond per month
prob_noloss(u,sig,T=12)

#probability you gain more than US bond per day
prob_noloss(u,sig,T=365)

#probability you gain more than US bond in per hour
prob_noloss(u,sig,T=365*24)

#probability you gain more than US bond in per minute
prob_noloss(u,sig,T=365*24*60)


This example may looks simple and have strong assumption in the calculation. But the way that the authors (from both books) are valuable.  

As discussed in the book (the Hedgehogging book), now suppose you are a fund manager and your, when clients of your look at annual return, they will have a high probability of feeling happy and thus have strong confidence holding putting money in your fund. But, if they are able to look at your return everyday, their happiness will decrease, thus some (or many) of them may pull their money out of your fund, which then will make you nervous, worried, maybe angry, and may make you make irrational decisions. 

Actually, this is chain effect not only just apply to fund managers. To individual investors, it is the same because we are managers of "our fund". That is why I feel quite impressed when the author mentioned this first from citation of simple statistics example and come to a common phenomenon in the market -- falling into the trap of randomness. 

However, it seems the author (of book: fooled by randomness) would not forbid managers or investors from looking at their daily return, but instead he recommends that we should just need to know our performance in this trading day, but keep calm when making decisions, not driven by our mood, which I feel is a true statement but just too general to follow.

I am still in progress of reading this nice "Hedgehogging" book. Hope I can learn more from it and will keep posted when new interesting thing is found.





Thursday, March 21, 2013

Readings for now to May

徐中约《中国近代史》1,2
全球通史 [美]斯塔夫理阿诺斯
Business Cycles:History,Theory and Investment Reality
The Theory of Interest , Fisher , 1930
白话孙子兵法
对冲基金风云录 (Hedgehogging)
A history of interest rates
中国历代政治得失
Ray Dalio How the economic machine works
Ray Dalio: why-countries-succeed-and-fail-economically
Ray Dalio:  an-in-depth-look-at-deleveragings--ray-dalio-bridgewater
佛教的见地与修道

Hope I can finish most of them.

Friday, March 15, 2013

A little more to implement the code put just now

Nothing new here. Just write a little bit code to do geocoding on a large file of addresses. The R code is as follows.


###########################################
# check and regeocoding NETS address
# using Google Map API
###########################################

setwd("C:/Geocoding")
source("C:/Geocoding/GIS_Google_Map_API.R") # code listed in the previous blog

address <- read.csv("addresses.csv",header=T)

GeoResult <- c()

for(i in 1:dim(address)[1]){
    addr_item = address[i,]
    Addr <- addr_item$Addr
    Addr <- ifelse(is.na(Addr), "", paste(Addr,", ") )
    City <- addr_item$City
    City <- ifelse(is.na(City), "", paste(City,", ") )
    State <- addr_item$State
    State <- ifelse(is.na(State), "", paste(State,", ") )
    Zip <- addr_item$ZIP
    Zip <- ifelse(is.na(Zip), "", Zip )
    Zip4 <-addr_item$Plus4
    Zip4 <- ifelse(is.na(Zip4), "", paste("-",Zip4, sep="") )
    full_addr <- paste(Addr,City,State,Zip,Zip4, sep="")
    georesult <- gGeoCode(full_addr)
    if(georesult$status == "OK"){
        GeoResult_i <- cbind( rep(i,length(georesult$lat)) ,
                            rep(full_addr,length(georesult$lat)),
                            georesult$lat,
                            georesult$lng,
                            georesult$formatted_address,
                            georesult$location_type,
                            rep(georesult$status,length(georesult$lat))
                          )
    }
    if(georesult$status != "OK") GeoResult_i <- c(i, full_addr, NA, NA, NA, NA, georesult$status )

    GeoResult <- rbind(GeoResult, GeoResult_i)
    Sys.sleep(0.5) # we need to pose a little bit or else google will regard it as too-many queries a time.
}

colnames(GeoResult) <- c("item", "full_addr", "lat", "lng", "formatted_address", "location_type", "status")

write.csv(GeoResult,"GeoResult.csv")

Geocoding using Google Map API via R with examples

Although I've taken an ArcGIS course before, I still like to use R as much as possible to complete some daily tasks (the reason is obvious...). These days one issue about geocoding or location based analysis comes out, driving more attention from me. Basically the task is to geocode and to check the accuracy of business addresses.

People around me mostly are using ArcGIS or use other expensive tools like TeleAtlas to do the geocoding. As I am not the core GIS person, I would like just to use my usual way --R -- to do the task. Here is the code I learned from this blog "Calling Google Maps API from R". I feel the code that the blog offers works pretty well. So I borrow it for my future reference and made some modification and examples based on my work experience.

For more information about Google Map API, we can refer to google's official documents: https://developers.google.com/maps/documentation/geocoding/

#####################################################################
#  R code to call Google Map API 
#  Source codes: http://svnwang.blogspot.com/
#  Reference: http://statisfaction.wordpress.com/2011/10/05/calling-google-maps-api-from-r/
#####################################################################
library(XML) # use install.packages("XML") if you haven't install this XML library before

getDocNodeVal=function(doc, path)
{
   sapply(getNodeSet(doc, path), function(el) xmlValue(el))
}

gGeoCode=function(str)
{
  library(XML)
  u=paste('http://maps.google.com/maps/api/geocode/xml?sensor=false&address=',str)
  doc = xmlTreeParse(u, useInternal=TRUE)

  lat=getDocNodeVal(doc, "/GeocodeResponse/result/geometry/location/lat")
  lng=getDocNodeVal(doc, "/GeocodeResponse/result/geometry/location/lng")
  formatted_address =getDocNodeVal(doc, "/GeocodeResponse/result/formatted_address")
  location_type = getDocNodeVal(doc, "/GeocodeResponse/result/geometry/location_type")
  status = getDocNodeVal(doc, "/GeocodeResponse/status")
  
  list(lat = lat,  # latitude 
       lng = lng,  # longitude
       formatted_address=formatted_address,  # full addresses suggested by google
       location_type = location_type, # geocoding accuracy
       status=status # status of geocoding: OK or zero_results
       )
}


#Example 1: you have a right address to geocode
str1 = "11 Wall St, New York, NY"
gGeoCode(str1)

#Example 2: your address is too general, 
#           but still google can map it by approximation.
str2 = "Wall St, New York, NY"
gGeoCode(str2)

#Comments: 
#as you can see from the result,there are multiple matched pairs of geocode and matched address.
#in practice, you need to choose which one is more to your need.

#Example 3: your address is not accurate, but google can guess what it is.
str3= "11 Wall Rd, New York" #actually, it should be "Wall St"
gGeoCode(str3)

#Example 4: your address is too bad, far from accurate, thus cannot be geocoded
str4= "1021 Watl P1lz"
gGeoCode(str4)







Wednesday, March 13, 2013

Ray Dalio at Davos 2013


I recently came across Ray Dalio's talk about the 2013 world economy, which is taken by CNBC.
http://raydalioblog.blogspot.com/2013/01/230305-octacomm-ray-dalio-cash-will.html



找到一篇讲 阿根廷金融危机 的文章

今天突然想了解一下阿根廷金融危机的事情,于是找到了2002年人民网的一篇文章。全文转载如下。

阿根廷为什么会发生危机
  ■本刊特约评论员 吴志华

  新年伊始,阿根廷国内爆发的一场经济和社会危机引起了国际社会的广泛关注。银行挤兑风波、街头民众骚乱、政府内阁辞职、无力偿还债务、半月连换5位总统……阿根廷为什么会在短短几周里突然从一个南美洲的“小康”之国走到了“破产”的境地———“兑换计划”:
  由经济衰退走向社会危机
  与前些年墨西哥、东南亚、俄罗斯和巴西先后爆发的金融危机相比,阿根廷遇到的这场危机显然要严重得多。前者大多主要是以银行呆账过多、公共财政赤字增多、外资大量流失、金融市场剧烈动荡为特点,“多米诺骨牌式”的连锁反应使这些国家原本脆弱的金融体系几乎在顷刻之间土崩瓦解。而阿根廷的危机不仅对国家整个经济体系产生了深刻的影响,而且还引起了社会和政治领域的剧烈动荡,各种经济、社会和政治的矛盾交织在一起,互为影响,既敏感又棘手,为世上所罕见。那么究竟是什么原因使阿根廷走到了这一步的呢?
  阿根廷是南美洲仅次于巴西的第二大经济体。国土面积278万平方公里,人口3600多万。阿根廷拥有丰富的矿产资源和广袤而肥沃的土地以及门类较全的工业基础,二战以后,阿根廷的经济一直居南美国家前茅,号称是南美的“小康国家”。1998年,阿根廷国内
  生产总值3350多亿美元,人均产值8500美元。
  20世纪90年代初,阿根廷率先在拉美国家实施新自由主义经济政策,采取了开放市场、吸引外资、拍卖国有企业等一系列措施,其中最重要的就是1991年4月起实施的“兑换计划”。根据这项计划,阿根廷实行本国货币与美元挂钩的固定汇率制,其核心是:比索与美元的汇率长期稳定在1:1,并可自由兑换,中央银行的货币发行量严格以美元储备为后盾。这一汇率制度后来就成为阿根廷国民经济运行规则的支柱,它对抑制通货膨胀和稳定经济起到了积极的作用。通货膨胀率由1990年的1300%下降到了1992年的17.5%。随后几年继续下降,1993年为7.4%,1994年4%,1995年1.6%,1996年0.1%,1997年0.3%。经济稳定和市场开放,还吸引了大量的外国投资。从1991年至1994年,阿根廷每年吸引的外资多达100多亿美元。因此,阿根廷很快从80年代“滞胀经济”中走了出来,取得了较快的经济增长。
  据统计,1991年至1994年,阿根廷经济增长率分别达到8.9%、8.7%、6.3%和6%,4年累计增长近30%。这一时期,阿根廷成为拉美经济发展最快的国家之一,成为实行新自由主义经济政策的“榜样”国家。
  1995年至1999年,墨西哥、东南亚、俄罗斯和巴西先后爆发的金融危机,对阿根廷产生了很大的负面影响。大量的外资在金融风潮中纷纷逃离阿根廷市场,国内投资不足的矛盾日益突出。原先在外来充裕资金掩盖下的一些经济问题逐步暴露出来,如企业竞争力差、公共开支庞大等。这一时期的阿根廷经济,如同大海中的一叶小舟,在国际金融风潮的“风吹雨打”中艰难地向前,经济增长的步伐开始放慢。据统计,1995年阿根廷经济下降了4.4%,虽然1996年和1997年经济略有回升,但是,1998年下半年起已出现经济衰退的端倪。
  1999年后,阿根廷在经济衰退的泥潭中越陷越深,难以自拔,社会矛盾进一步激化,社会局势到了一触即发的危险边缘。1999年至
  2001年,阿根廷经济分别出现了3.5%、0.7%和1.4%的负增长。
  在全面和持续衰退的阴影下,中小企业大量倒闭、工农业生产滑坡、市场需求不旺、外贸持续逆差、财政赤字严重、失业率上升,贫困人数剧增。2001年,全国失业率已从1990年的6.3%上升到了18%,这就意味着全国有230万经济自立人口找不到工作。
  同时,生活在贫困线以下的穷人也激增到全国人口的1/3。1999年底,以德拉鲁阿总统为代表的执政联盟在大选中获胜,然而,新政府上台执政在如何解决一大堆的经济难题上,出现了严重的分歧。2001年3月,德拉鲁阿总统先后撤换3位经济部长,多次修改经济政策均未奏效。由于偿还债务困难而被迫采取的禁止从银行提款的措施引起民愤,激化了社会矛盾,终于酿成了一场更严重的社会危机。
  “联系汇率制”:
  阻碍经济发展的绳套
  回顾阿根廷由经济增长走到经济衰退,由经济衰退走向社会危机的10年历程,许多经济学家都指出,阿根廷走到今天这种境地,与政府推行的经济发展战略和经济政策出现偏差有着密切的关系。
  与美元相挂钩的联系汇率制是阿根廷这些经济发展模式的核心。这种汇率制度虽然对抑制通货膨胀、保持金融市场稳定以及促进经济恢复增长产生过积极的作用。然而,随着国内外经济环境的变化,这种汇率制度带来的一些缺陷逐步显露出来,后来反而成为阻碍经济发展的绳套。
  第一,美国是发达的工业化国家,阿根廷是一个发展中国家,劳动生产率要比美国低。比索与美元挂钩后,美元升值,比索也会跟着升值。据统计,1991年至1994年,阿根廷国内通货膨胀率高于美国和其他西方主要工业国,致使阿根廷比索累计升值约45%。1995年至1998年,阿根廷通货膨胀率虽然下降到西方工业化国家的水平,可是受美元升值的影响,阿根廷比索的实际汇率还是相应上升了约15%。比索升值无形中抬高了阿根廷劳动者和公务员的生产成本的工资支出。有的经济学家指出,阿根廷企业的劳动生产成本已占产品价格的49%,而智利等拉美邻国只占21%。其结果是,削弱了阿根廷产品的竞争力和企业的利润率,使大批企业倒闭,各级政府公共开支增加,市场价格扭曲,出口受到压抑,进口却大受刺激,平衡国际收支结算的压力日益加大,迫使政府和企业更多地从国际金融市场那里融资来解决资金不足的困难。
  第二,严格以外汇储备来控制货币发行量有利于保持中央银行的独立性,防止通货膨胀。不过,同时也限制了国家对宏观经济的调控能力。由于中央银行必须根据国家外汇储备能力来决定货币的发行量,国家利用财政和货币政策来刺激经济恢复能力的回旋余地就大大缩小,越是经济衰退严重,货币发行量越小,越是加剧了市场的萧条和投资的不足。1998年后,阿根廷政府面对经济日益衰退束手无策,无法通过适当的扩张的货币政策将国家经济“车轮”从衰退的“泥潭”中拉出来,摆脱困境,走上
  恢复增长的道路。
  第三,这种汇率制度全面加强了国家经济的“美元化”。由于本国货币与美元可自由转换,居民的银行存款无论是存比索还是存美元都是一样的,致使许多经济和交易活动以美元为基础来结算。在国民的心目中,手中的比索就是美元,可以用美元结算银行存款和缔结债务,可以按照美元的通货膨胀率来调整服务业的价格等等,其结果是将全国各种经济活动全部被美元“套住”,全国2/3的银行存款、2/3的债务都是以美元结算的,而实际上其中大部分并非美元存款或美元债务,造成了数百亿的假美元存款和债务。这种情况一旦遇到经济困难时就突显出来,银行不可能有那么多的美元将比索兑换成美元。
  因此,现在政府要求实行比索化,如何解套就成为一个极为棘手的难题,容易引发社会冲突。阿根廷银行业认为,现在政府欲将贷款“比索化”,这对银行业来说是一个“灾难”。阿根廷中央银行最新的统计,到今年1月8日止,全国固定收益存款总额有260.64亿美元,如果按照政府的规定,将债务按1美元兑换1比索的汇率全部转换成比索的话,未来5年内,银行业将损失150亿美元的资金。
  正是由于这种汇率制度已全面深入到社会生活的各个层面,经济“美元化”程度已根深蒂固,具有“牵一发而动全身”的风险,谁也不
  轻易地触动这个“马蜂窝”,这也是近几年阿根廷历届政府迟迟不愿调整汇率制度,只是在维护现行固定汇率制度的基础上对先前经济政策进行修修补补的重要原因,其成效自然有限。
  第四,阿根廷政府没有充分利用经济增长的有利时机实行财政制度的改革,相反,盲目地扩大公共开支,超前消费,其结果是造成公共开支增长过快。从表面上看,阿根廷财政开支结算并没有出现严重的失衡。几年来,公共开支赤字一直被控制在占国内生产总值的2%左右,远远低于墨西哥、巴西和东南亚国家爆发金融危机前的公共开支赤字的比重。不过,阿根廷公共开支赤字是被大量的外资和抛售国有企业收入所掩盖起来。进一步分析就会发现,这一时期的阿根廷公共开支增长速度很快,平均每年增长30%左右,而增长过快的原因主要表现在:政府用于支付公务员工资的开支在10年间几乎翻了一番;社会保障范围不断扩大,而用于社会保障的税源却在减少;中央财政和地方财政关系没有理顺,税收漏洞很大。因此,政府公共开支每年增长近30%。1999年后,随着外国投资的减少和国有企业拍卖接近尾声,政府财政收入来源枯竭时,公共开支赤字问题就凸现出来。在国际货币基金组织要求削减财政开支,实行“零赤字财政”时,阿根廷已显得“力不从心”,难以通过减少公务员收入和公共开支来完成既定的目标。
  第五,公共开支的增长势必带动公共债务的增长。阿根廷公共债务这几年来直线上升。据拉美经委会提供的统计数据,20世纪90年代中期后,阿根廷公共债务平均每年递增100亿美元。从1990年的613亿美元增长到去年的1460亿美元。为了偿还到期债务,阿根廷只能通过国际融资来“借新钱还旧债”,同时又不得不为此付出了高昂的债务利息。据阿根廷政府公布的统计数字,到今年1月2日,阿根廷公共债务总额已达1415亿美元,相当于国内生产总值的54%,对外贸易总额的3倍。在它无力完成与国际货币基金组织达成的“零财政赤字”计划后,国际金融机构中止了对它的贷款援助,阿根廷国际信用丧失,举借新债无门,不得不宣布停止偿还外债,民众也感到惊慌,纷纷到银行挤兑提款,使债务问题成为引起一场灾难深重社会危机的导火线。
  第六,阿根廷没有随着国外经济条件的改变而及时调整自己的宏观经济政策。1999年初,巴西在金融危机关头放弃了原来的固定汇率制度,转而采用了浮动汇率制,本国货币雷亚尔贬值50%以上。众所周知,阿根廷与巴西同为南方共同市场成员国,两国贸易额已从90年代初的几十亿美元猛增到1997年的148亿美元。巴西货币大幅度贬值直接影响到阿外贸产品的竞争力。
  在这种情况下,阿根廷政府仍然对自己的固定汇率制深信不疑,同时又对邻国的经济政策耿耿于怀,要求给予某种形式的补偿。于是两国贸易纠纷不断,贸易往来受阻。
  2001年,巴阿两国贸易额下降了24%,双边贸易额只有112亿美元。由于阿根廷外贸出口的1/3是面向巴西市场,受损失最大的也是阿根廷。另外,全球经济增长放缓,也影响到阿的外贸出口。
  阿根廷危机所暴露出来的问题使人们看到,一个国家经济政策必须要与本国的条件相适应,同时,又要密切注意国际经济大环境的变化,给予适度和及时地调整。
  面对经济全球化浪潮,各国政府既要充分利用市场的调节作用,同时也不能放弃国家对经济活动的宏观调控职能。目前,阿根廷政府已决定采用新的浮动汇率制,并强调国家不能失去经济主权。但是,为了解决几年来积重难返的问题,阿根廷将要走过一个曲折而漫长的道路。
《人民论坛》 (2002年第三期)

question on the huge debt of Chinese local government

1。地方政府的巨额债务从何而来?
2。这些债务用到哪里去了?
3。为什么银行会借给地方政府这些钱?银行借钱给政府的时候,是明知道哪些政府还不上呢?还是知道地方政府或是在中央政府帮助下可以还得上?
4。哪些政府欠债最严重?或是大家都严重?

这些问题是我在读 《搞懂金融的一本书》时候想到的。感觉要明白中国经济现状与以后的变化发展,这几个问题得弄清楚。


后记:
刚才和室友讨论了一下,发现了这么几个答案。

1. 国家设定了GDP增长的目标,于是地方政府为了迎合考核,追求GDP增长,于是大量进行政府投资。卖商业用地,搞房地产是快速增长GDP的一个好办法。于是政府进行了大量的基础建设,营造了好的投资环境,把土地变成合适的商业用地,高价卖出。这个过程中,大量的基建投资让政府负债。当然基建投资不完全是为了房地产,基建本身也是增长GDP的一个快速方法。于是地方政府有了巨额的债务。
2. 上面的分析可以说明,这些地方政府借来的强都到哪里去了。
3. 中央政府制定的目标:GDP增长。不过并没有设置合理的考核标准,GDP只求增长,不求质量与资源配置。
关于政府知不知道地方能不能换的上这个问题,实在是不知道。如果说现在的一切,即通过让地方政府借债投资基础建设的方法达到让国家基础建设现代化,增加就业的目的,是中央预先设计好的,那么现在连续几次的中央大额投资,实际上增发货币,来补地方政府债务漏斗,也是设计之中,那么我们还比较乐观的相信,现在的高通货膨胀和楼市泡沫也是在中央的控制之中的。当然,如果中央的一系列举措,是看到现在因追求高GDP的后果话,我们还真应该担忧,中央政府是不是能很好的把通货膨胀控制好,让贫富差距缩小,而不是在通胀中继续扩大。
4. 这样看来应该是全国性的了。

Monday, March 11, 2013

what is investment

Just came across words on investment and spend when reading Fisher's book 'The Theory of Interest' -- to spend is to pay money for enjoyment which comes very soon; to invest is to pay money for enjoyment which are deferred in a later time.

Also, another feeling about what income is from the very beginning of the book is the income is a combination of satisfaction from enjoyment from or due to the labor, plus the real money income which can be used to be exchanged with other enjoyment, plus the cost of being alive. 


Saturday, March 9, 2013

Some notes from Cooperate Finance study

Accounting is a language of Business.
Finance is about the study of 'value', not necessarily all about money.